
Training Neural Networks
with hundreds of GPUs on
Graham and Cedar

Fei Mao, SHARCNET

Outlines
•  What is new?

 - Hardware/software

•  Where to run a job?

 - Node types and scheduling policies

•  Different methods for managing variables

 - Parameter server or replicated?
 - CPU memory or GPU memory?

•  Interconnection and I/O bottleneck

 - TCP/IP or IB, Lustre or local

•  Examples

New systems

Softwares
•  Caffe2, TensorFlow, Theano, Torch
•  More about software:

•  https://docs.computecanada.ca/wiki/AI_and_Machine_Learning

system GPU type #GPU devices target jobs

Graham P100-12g
320

(2 per node)
Single GPU, MultiGPU,

Distributed

Cedar
P100-12g/

16g
584

(4 per node)
Single GPU, MultiGPU,

Distributed

Minsky
P100-

NVLINK 4 Experiment

Node Types

Graham GPU nodes:
•  2 x E5-2683v4, 32 CPU cores, 128GB memory
•  2 x P100-12GB-PCIE, one each CPU socket
•  IB FDR 56Gb/s, 1.6T NVMe SSD
•  Accept single GPU jobs and whole node(s) jobs
•  SLRUM 2 GPUs request: #SBATCH --gres=gpu:2

CPU CPU

G
P
U

G
P
U

IB SSD

Node Types

Cedar Base GPU nodes:
•  2 x E5-2650v4, 24 CPU cores, 128GB memory
•  4 x P100-12GB-PCIE, two each CPU socket
•  Intel OPA 100Gb/s (LP slot), 800GB SATA SSD
•  Accept single GPU jobs and whole node(s) jobs
•  SLRUM 4 GPUs request: #SBATCH --gres=gpu:4

Node Types

Cedar Large GPU nodes: (best for ML/DL)
•  2 x E5-2650v4, 24 CPU cores, 256GB memory
•  4 x P100-16GB-PCIE, all under single CPU socket
•  Intel OPA 100Gb/s (LP slot), 800GB SATA SSD
•  Accept whole node(s) jobs, single GPU jobs less than 24 hours
•  SLRUM 4 GPUs request: #SBATCH --gres=gpu:lgpu:4

Different methods for managing variables

Parameter Server(s):

Different methods for managing variables

Parameter Server(s) in CPU or GPU?

•  Bottleneck is between GPUs from
different sockets

•  Good for CPU as server (Server
operations can be overlapped with
GPU training)

•  Bottleneck is between CPU and GPU
•  Good for GPU as server

Different methods for managing variables

Replicated parameters on all GPUs:

•  Updating parameters = all_reduce operation
•  Total bandwidth between GPUs matters
•  Cedar Large GPU node has the highest total PCIe bandwidth
•  NVIDIA NCCL can be used, but not always the best, do benchmarking

Interconnection

Topology: Fat-Tree for both Graham and Cedar

Blocking factor:
•  non-blocking for 32 servers under same “Edge” switch
•  2:1 blocking for Cedar when crossing switches
•  8:1 blocking for Graham when crossing switches

Network Protocols

TCP or IB (Infiniband)?
•  IPoIB (IP over Infiniband) performance is ~30-40Gb/s

•  Tensorflow:

•  gRPC (runs on top of TCP) by default
•  IB is supported as “third party contribution”

•  Caffe2:
•  TCP only
•  IB will be supported in the future

•  pyTorch:
•  initially MPI and raw TCP sockets, later RDMA

•  Theano:
•  IB is supported via third party projects (e.g. Theano-MPI)

Choosing the correct interface when using TCP:
•  Multiple network interfaces when run command “ifconfig”
•  Should always use “ib0” interface’s IP address
•  Other interfaces are very slow (some with only 1Gb/s)

Understanding I/O bottleneck

I/O will easily become bottleneck when training with many GPUs
•  1 P100 GPU can train Resnet-50 with a speed of 200 images/s (40MB/s)

•  Lustre file system (/project and /scratch):
•  Able to achieve 30GB/s using hundreds of clients to load a huge file
•  Loading imagenet LMDB file sometime can only reach 300MB/s
•  Random accessing is even slower, can be less than 100MB/s

•  Local file system (/localscratch):
•  SSD based, 800GB on Cedar, 1.6TB on Graham
•  Cedar has SATA SSD (~500MB/s), Graham has NVMe SSD (>1GB/s)
•  Need to copy the data every time before training starts
•  Local storage will be cleaned after job is finished/killed

•  Highly suggest to copy the data to local SSD for faster random access
•  Original data can be stored on multiple OSTs on /project or /scratch to

achieve higher throughput
•  Details on next page…

Lustre parallel file system

•  By default, single file is stored in a single OST
•  Commands to stripe the file across OSTs:
 - lfs setstripe -s 1m -c 8 <file> (stripe size 1MB, count 8 OSTs)
 - cp <target> <file> (above command only creates empty file)
 - lfs getstripe <file> (to check)

Examples
Common problems:

•  What ML/DL tools are available?

•  How to require hardware resources via SLRUM?

•  How to launch the program on all nodes?

•  How to use local storage?

•  How to get correct IP address?

THANK YOU!

Q&A

