SHARCNET
Job Scheduling Policy and
Requirements
Strawman Document

2005/6

computing tomorrow's solutions

Overview

* High-level objectives
e Scheduling schematic
 Resource costing
e Fair access
* Job scheduling specifics
- Test jobs
- Serial
- Parallel
* Technical requirements

A NET"

A NET" Proposed expansion;

Fully funded 4/3/2004

uelph
| Lake { T | s [7e
k Huron) Water| g Sheridan / Lake Ontario
\ aterloo °5le y
~ /,-’ ~
| v Laurier e
1| /[ﬂ““x____ﬁ_h____; L d_-."}
R Brock ||
k“a,,r*' Fanshawe C '
/ als L < < W
J [P :.o McMaster \ﬁ,_;.\
‘ Western T
s o
o1y g / 10 Gb/s —— 1 Gb/s
m ‘:.J_,‘ - - B — [zl Redeployed Alphas
e S | . Ic] Capability clstr ' East disc
B o it] 71 Throughput clstr
Windsor 7/ Lake Erie SMP ' Archive
| - _ _ _ 6] Grid Lab OO Tape
— All sites: Visualization + AccessGrid | Interconnect Topology Cluster
N =

ol o |
(@
1

Ple

UOIT

General Policy Issues

Overall aim is to use all SHARCNET resources effectively &

A NET"

maximize user throughput

System-wide accounting: user priorities determined from use of
all SN facilities (by user, group or project)

Appropriate cluster use, but avoid wasting cycles

- SN2 architectures tailored to specific applications but all can
run, e.g., serial jobs
Contributors: pre-emptive access

Batch operation: jobs normally run in batch mode - throughput
timescale ideally ~ f x runtime, f < 1; allow testing & debugging

Fair use: users should have similar probability of starting a job
(at similar levels of use)

Transparent accounting & feedback: procedures and
information used to determine priority/fairshare, expected
queue time etc. should be available to users

General Requirements

* “Queue-less” scheduling: treat systems as one flat
resource, let scheduler handle job placement: improves
efficiency and flexibility (really partition-less scheduling, cf.
APAC document)

e Central database: records jobs across all SHARCNET
 SN-wide queuing:
- Reference global user statistics to determine fairshare

- Ability to manage global and local job submission
including moving jobs, fault tolerance...

- work towards “property” queues: serial, small
parallel/threaded, licenced software etc.

A NET"

Cost

* “Charge” for CPU time: could measure use of many other resources:
memory, network, storage

* Normalised SHARCNET Cost/CPU-Hour (NSC): priorities/fair use
determined by the NSC, function of real cpu-time and other factors:

- User-adjusted priorities: users can choose to run/start at higher or lower
priority and corresponding higher or lower NSC; ideally a user could
dynamically adjust this priority (perhaps desighate a single urgent job)

- Dynamic cost: a job started as “urgent” at 3 x rate would drop to 1 x rate if
machine became empty

- Varying CPU power: charge less for less powerful CPUs - primarily to
encourage use of older systems
- Incentives: discount NSC/actual to encourage appropriate/beneficial use:
* Checkpointing (especially parallel jobs)
* Demonstrated efficiency (scaling, fraction of node peak, effort etc.)
* Certification
* Research reporting

- Dedicated time: runs at NSC/actual = O (perhaps accumulated at night,
weekends etc. within 6-month window)

A NET"

Fair Access

 Generally, once a job is started, it should run to completion: the
priority assigned to a user or job affects its probability of starting

* Probability of a job starting should not depend on submission time.
Starting probability:

- Is decreased if a large number of that user’s jobs is running

- Is decreased if that user has accumulated a large NSC over some
period*

- Depends on user-assigned priorities

- May depend on *dynamic “fairshare” averages: priority decreased
for a day, week etc. if heavy use over a day, week etc.

* A user’s fairshare state(s), starting probability and queue wait time
should be available to them via the portal together with average wait
times etc.

e Ability to modify user’s priority depending upon group or project use

A NET"

Test Jobs

Users should have ability to run test jobs (even on production clusters).

A NET"

Such jobs/queues should:
Run quickly

Be established to avoid misuse: higher NSC or allocation of test
time
- One test job at a time per user

Need to ensure that test jobs do not orphan preempted jobs (a test
job should pre-empt a job of the same size, perhaps preferentially a

user’s own job; any job that is pre-empted should ideally resume as
before once the test job has completed)

Ideally, such jobs should be flexibly and dynamically scheduled
without the need for a special test queue of reserved processors

Job Scheduling

e Serial jobs: jobs normally run to completion; starting
probability is determined as above (do not normally share
resources with other equal priority jobs)

e Parallel jobs: challenge is to reserve sufficient processors to
start job without idling those processors; simple pre-emption
can leave stranded jobs

Reserve a second slot on a cpu for a pre-empting job and when this
occurs, coarsely time slice between the two.

Allows pre-empted job to checkpoint - resubmit/migrate

Duty cycle perhaps 50/50, but must ensure pre-empted job stops -
80/207? In principle priority could affect duty cycle

Efficient scheduling probably requires power-of-2 no. of processors;
scheduler should enforce correct no. of processors/node etc.

Cost should encourage scaling not merely many procs, suggest:

NSC = NSC =T, /,/

NET"

Technical Requirements

* Direct access to and control of job starting and placement
mechanisms

* Ability to dynamically adjust priority of job (for users and
system - cf. nice)

* Ability to do coarse-grained time-slicing (suspend/resume)
 Detailed control of priority/fairshare calculation

* Ability to access system accounting tables and generate
SHARCNET-wide data

A NET"

User queries .. :

Clusters

Jobs table

Priority

calculation

/I NET"

	Overview
	General Policy Issues
	General Requirements
	Cost
	Fair Access
	Test Jobs
	Job Scheduling
	Technical Requirements

