
Coconut Multicore Framework:
Static Analysis Assisted Scheduling

Kevin Browne
brownek@mcmaster.ca

McMaster University
IBM Center for Advanced Studies Fellow

May 20, 2009



Cell BE Multicore Issues and Solutions

Coconut Multicore Framework

Coconut Advantages

Verification Tool

Performance Simulator

Current Status and Future Work



Multicore Scheduling Problems

Program Correctness

I Difficult to fix race condition bugs produce unpredictable
program state due to un-synchronized concurrent events

I Increasing number of cores only increases difficulty

I Development costs quickly become prohibitive

Optimal Scheduling

I Main memory bandwidth key bottleneck

I Communication patterns may also cause bottlenecks

I Number of cores needing data likely to increase faster than
bandwidth



New Tools, Frameworks and Solutions Emerge

Cell BE Solutions

I Accelerated Library Framework (ALF) [CHKW08]

I Cellgen [SYR+08]

I Cell Superscalar (CellSs) [BPBL06]

I CorePy [MML07]

I Mercury Multi-core Framework [BCG+06]

I MPI Microtask [OIS+06]

I MSL [ZLRA08]



New Tools, Frameworks and Solutions Emerge

More Cell BE Solutions

I Octopiler [EOO+06]

I OpenCL [Mun08]

I Peakstream [Pap07]

I Rapidmind [MWHL06]

I Sequoia [FHK+06]

I SysCellC [KHH08]



Our Solution: Coconut Multicore Framework

I Runtime system asynchronously executes streams of atomic
virtual opcodes (AVOps) on each processor element to
co-ordinate parallelism

Figure: Coconut Multicore Framework view at execution time



Coconut Multicore Framework: Runtime System

I Runtime system thread on each SPE, executes AVOps

I Runtime system loads computational kernels at start-up

I AVOps are sent from the MIC to each SPE, buffered locally

I AVOps execute computational kernels exploiting SIMD ILP

Figure: SPE Runtime thread internal view



Coconut Multicore Framework: AVOps

Main memory data transfers:

I LoadMemory - loads data from main memory

I StoreMemory - stores data to main memory

I WaitDMA - waits for main memory transfer completion

Inter-SPE data transfers:

I SendData - sends data to an SPE

I WaitData - waits for data from an SPE

Inter-SPE signalling:

I SendSignal - sends a signal to an SPE

I WaitSignal - waits for a signal from an SPE

Executing kernels:

I RunComputation - executes kernel (e.g. C function)



Why Runtime + AVOps Abstractions?

I Runtime system can be implemented on different architectures

I Separation of levels of parallelism (SIMD ILP in
computational kernels vs. Process-level parallelism in AVOps
code) allows developer to focus on problems independently

I AVOps expose important aspects of parallelism by abstracting
away all but the necessary information

I Abstraction allows for linear-time static analysis of AVOps
programs

I Higher-level abstractions of problems have served us well -
Coconut SIMD ILP optimization techniques are included in
Cell BE SDK 3.0 SPU-MASS library (4x faster than
alternative SimdMath library created in C)



AVOps Expose Parallel Synchronization

AVOps Program Example

SPE 1, SendSignal (Signal 2) (SPE 0)
SPE 0, WaitSignal (Signal 2)
SPE 0, SendData (SPE 1) (Data Loc. Info.) (DataTag 2)
SPE 1, WaitData (DataTag 2)

Synchronization Bugs Exposed!

I Waits without associative Sends will deadlock system

I If multiple Sends target the same unit (either signalling or
communication), without some distinction made between the
associative Waits as to which is waiting for what, deadlock
may occur

I Kernel execution could be attempted before Wait operation
for input data block, completion unpredictable results



AVOps Expose Communication Latency

I Wait operation could occur before transfer initiated by Send is
complete leading to stalls and latency

I Optimize performance by minimizing occurrences of waiting

x

1

1

SendSignal

WaitData

WaitSignal
SendData

N
o
 r

ea
d
s 

o
r 

w
ri

te
s 

to
 b

u
ff
er

 
u
n
ti
l 
p
a
st

 
b
a
rr

ie
r 

W
a

it
D

a
ta

N
o
 w

ri
te

s 
to

 
b
u
ff
er

 u
n
ti
l 

D
M

A
 

co
m

p
le

ti
o
n
 

is
 c

o
n
fi
rm

ed

WaitDMA

.

.

.
other

operations
.
.
.

.

.

.
other

operations
.
.
.

Figure: Exposed communication latency



Verification Tool Leverages Exposed Synchronization

I Exposed parallelism synchronization allows us to automatically
check for parallel bugs at compile-time

I Linear-time verification tool created to verify no deadlocks
exist and that results are independent of execution order

I Keeps track of state with constant space requirements

I Result: no parallel debugging required!

I Saves development costs through increased productivity

I Allows developer to focus on optimization, instead of having
to make algorithm straight forward for correctness purposes
(at cost of lost optimizations)

I Ensures correctness for critical tasks (e.g. MRI imaging)

Book chapter in “Process Algebra for Parallel and Distributed
Processing”[AG08] defines the technique thoroughly



Key Verification Ideas Explained

I Assume program of AVOps has certain properties when
presented to the algorithm as a stream of AVOps: (SPE x,
OP)

I Program is order independent if given the same input (in main
memory) all possible execution orders produce the same
output (in main memory)

I A program is locally sequential if every (SPE A, SendSignal
SPE B Signal ID) is followed by a corresponding
(SPE B,WaitSignal Signal ID), and every (SPE A, SendData
SPE B Location Size Data ID) is followed by corresponding
(SPE B, WaitData Data ID) and (SPE A,WaitDMA Data ID)
instructions.



Verification Example

AVOps with a race condition!

SP0: SendSignal (Sig 1) (SP2)
SP1: SendSignal (Sig 1) (SP2)
SP2: WaitSignal (Sig 1)
SP2: SendData (Data A) (SP0)
SP2: WaitSignal (Sig 1)
SP2: SendData (Data B) (SP0)

Two SPEs
are signalling
SPE 2 to
request data,
but with the
same signal.

State



Verification Example

Let’s look at how the Verification tool analyzes things.

SP0: SendSignal (Sig 1) (SP2)
SP1: SendSignal (Sig 1) (SP2)
SP2: WaitSignal (Sig 1)
SP2: SendData (Data A) (SP0)
SP2: WaitSignal (Sig 1)
SP2: SendData (Data B) (SP0)

We add the
SendSignal
to the State.

State

(SP2, Sig 1)
→ (SP0)



Verification Example

Race condition detected by checking the state.

SP0: SendSignal (Sig 1) (SP2)
SP1: SendSignal (Sig 1) (SP2)
SP2: WaitSignal (Sig 1)
SP2: SendData (Data A) (SP0)
SP2: WaitSignal (Sig 1)
SP2: SendData (Data B) (SP0)

Problem, we
already have
an incoming
Signal 1 on
SPE 2!

State

(SP2, Sig 1)
→ (SP0)



Verification Explained

The real trick: iteratively building a partial-order of AVOp
execution from a presentation order.

SP0: SendSignal (Sig 1) (SP2)
SP2: WaitSignal (Sig 1)
SP2: SendData (Data A) (SP0)

A signal is
sent from
SP0 to SP2.

State

(SP2, Sig 1)
→ (SP0)



Verification Explained

We know that the SPE 2 WaitSignal spins until SendSignal on
SPU 0 executes. Therefore all instructions on SPE 2 after the
WaitSignal execute after the SPU 0 SendSignal.

SP0: SendSignal (Sig 1) (SP2)
SP2: WaitSignal (Sig 1)
SP2: SendData (Data A) (SP0)

A signal from
SP0 is
caught on
SP2.

State



Why Leverage Exposed Communication Latency?
I Communication cost info critical for static scheduling [GRV04]



Communication Cost Important to Cell BE Performance
I Memory access is “the” performance bottleneck for most

algorithms on Cell BE [VKJ+07]

Figure: Attempt latency hiding through overlapping computation



Main Memory Bottleneck Analysis

I 25.6 GB/s combined Inbound/Outbound RAM bandwidth

I 32 operations per value required to hide latency of main
memory access with computation

I Intra-SPE or inter-SPE re-use of data may alleviate bottleneck

Table: Assuming 8 SPEs request 2 64x64 input blocks each

Operations
per Value

Computation
Time (ns)

(Transfer
/ Com-
putation)
Time

Potential
Latency
Hiding

32 10,240 1 100%

16 5,120 2 50%

4 1,280 8 12.5%

1 320 32 3.125%



Processor Data Sharing as a Solution?

Figure: Cannon’s algorithm
computes block C (i , j) at each
processor P(i , j).

I Data re-use within an
SPE LS reminiscent of
cache optimization

I Inter-SPE data re-use not
unprecedented
conceptually, used in
multiprocessor algorithms
(e.g. Cannon’s algorithm)

I Difference with
network-on-a-chip Cell BE
is smaller granularity,
tighter processor coupling,
network design



Communication Cost Modelling on Cell BE

Single SPE Model:

S + (D * b)

S - start-up cost
D - transfer time per byte
b - number of bytes

I Model was effectively used to optimize use of static buffers for
DMA on a single SPE [CS06]

I Dividing transfer rate by number of concurrent main memory
read transfers would likely be effective at extending the model
to multiple SPEs

I Problem: extending model to inter-SPE communication



A Look At EIB Internals
I 4 rings for data transfer (2 clockwise, 2 counterclockwise)
I Command Bus sets up commands, handles coherency,

tree-structured network
I Data Arbiter controls access to EIB rings on a per packet

basis, star-structured network
I Elements connected via a Bus Interface Unit (BIU)



EIB Performance Characteristics

I MIC limited by 25.6 GB/s combined inbound/outbound RAM
access

I MFC of SPEs support 25.6 GB/s inbound/outbound

I Each ring supports 3 concurrent non-overlapping transfers

I Eight concurrent transfers supported due to Command Bus
snooping limitations, as long as paths do not overlap, limiting
total bandwidth to 204.8 GB/s

I Transfers broken up into 128-byte packet size

I Packets will always take shortest distance path across data
rings

I Round robin scheduling of packets

I MIC transfers have highest priority level, all others equal



Communication Pattern Bottleneck

I Inefficient communication patterns can reduce EIB bandwidth
utilization to 38% of the 204.8 GB/s theoretical peak
[CRDI07]

I Overlapping and lengthy (six hop) transfer paths can severely
hamper EIB performance by allowing only one transfer per ring

I Individual DMA units only capable of processing so many
DMAs concurrently, can be overloaded if the target or source
of too many transfers

I Large DMA message sizes more efficient than many smaller
message sizes

I Under heavy load, gets have better contention resolution than
puts [KPP06]



Communication Pattern Bottleneck

I Circular passing of data only utilizes two rings - only 6
simultaneous transfers possible = 75% of bandwidth utilized



Inter-SPE Transfer Performance Optimization

I Communication patterns matter to algorithm performance
during periods of high SPE-SPE communication and low
dependence on main memory data transfers (otherwise main
memory becomes bottleneck)

I Physical locations of SPEs matter to detection of inefficient
communication patterns

I We don’t actually know physical SPE location for SPEs
assigned to us by the OS, impedes optimization of
communication pattern

I However Coconut Runtime system can ‘ping’ SPEs at start-up
to determine location



Performance Simulator

I Created to evaluate the effectiveness of different
communication patterns

I Efficient linearly bounded complexity due to high-level
exposure of Multicore-level parallelism and the limited possible
state of the EIB

I Quick compile-time report of algorithm performance, specific
occurrences and severance of latency for each Wait operation

I More efficient for development cycle time than performance
profiling or simulation of binary executables



Performance Simulator Report Example

SPE 0 Statistics Breakdown
---------------------------

Total Instructions: 5184

Total Waits: 2080
Total Latency Waits: 1667
Total Leadency Waits: 413
Total Runtime Cost of Latency: 616.942

All Latency Wait Instructions:

Linenumber AVOp Latency
---------- --------------------------- -------
13 WaitDMA 0 0.5144
14 WaitSignal 4 0.2624



Performance Simulator Design - Different Approaches

Assume Best or Worst Case

I Cheap computation

I Information not very useful

Discrete Event Simulator

I Very expensive to compute

I Information very useful

I We don’t know enough about EIB design and behaviour to
model at this level, information is not in public domain

Continuous Mathematical Model

I Reasonable to compute

I Useful information

I Doesn’t require information about non-public EIB design
features



Performance Simulator Design - Key Idea

Different Bottlenecks:

I Main memory (MIC)

I Each MFC’s inbound and outbound limitation

I Each direction over the ring has a 6 concurrent transfer
limitation

I Transfers with overlapping paths will have to take turns using
ring bandwidth

Basic Algorithm:

1. Distribute MIC bandwidth evenly to MIC transfers

2. Identify the bottleneck with the most contention

3. Distribute available bandwidth evenly to transfers associated
with the bottleneck

4. Repeat 2-3 until average of remaining total EIB bandwidth is
less than the worst resource contention restriction on transfers

5. Distribute remaining bandwidth evenly to remaining transfers



Worst Bottleneck Example



Performance Simulator: Passive Usage
I Performance simulation for theoretical architectures is possible
I Comparison of algorithms to contrast effectiveness of main

memory bottleneck alleviation

Figure: Greedy Inter-SPE data sharing for Matrix Multiplication improves
performance on experimental architecture



Performance Simulator: Active Usage

I Static scheduling
algorithms may be
informed by detailed
performance simulation
when making scheduling
decisions

I Performance Simulator is
computationally efficient
enough to make this
practical at compile-time

I Simulate result of
alternative scheduling
decisions to determine
best move



Project Status

Current Work

I Integrating performance simulation into static scheduling of
tasks

I Enhancing performance simulator reporting techniques
(transfer specific latency, leadency analysis)

I Tuning performance simulator against results on actual
hardware

I Fence and barrier data transfers to increase EIB determinism

Future Work

I Performance simulation informed scheduling of DAGs, loops

I Applying ILP scheduling techniques to Multicore level



Thanks

I Christopher Anand (supervisor)

I Wolfram Kahl (co-supervisor)

I Gabriel Grant (implemented Runtime system)

I Shiqi Cao (helped implement Coconut components)



Legal Notices

I Cell Broadband Engine is a trademark of Sony Computer
Entertainment, Inc., in the United States, other countries, or
both.

I IBM is a registered trademark of International Business
Machines Corporation in the United States, other countries, or
both.

I Other company, product, and service names may be
trademarks or service marks of others.



Michael Alexander and William Gardner, editors.
Process Algebra for Parallel and Distributed Processing:
Algebraic Languages in Specification-Based Software
Development.
Chapman and Hall, 2008.
(to appear).

Brian Bouzas, Robert Cooper, Jon Greene, Michael Pepe, and
Myra Jean Prelle.
Multicore framework: An api for programming heterogeneous
multicore processors.
Technical report, Mercury Computer Systems, Inc. Technical
Report, 2006.

Pieter Bellens, Josep M. Perez, Rosa M. Badia, and Jesus
Labarta.
CellSs: A programming model for the Cell BE architecture.
IEEE, November 2006.

Catherine H. Crawford, Paul Henning, Michael Kistler, and
Cornell Wright.



Accelerating computing with the cell broadband engine
processor.
In CF ’08: Proceedings of the 2008 conference on Computing
frontiers, pages 3–12, New York, NY, USA, 2008. ACM.

T. Chen, R. Raghavan, J. N. Dale, and E. Iwata.
Cell broadband engine architecture and its first
implementation: a performance view.
IBM J. Res. Dev., 51(5):559–572, 2007.

Tong Chen and Zehra Sura.
Optimizing the use of static buffers for dma on a cell chip.
In In The 19th International Workshop on Languages and
Compilers for Parallel Computing (LCPC 2006, 2006.

A. E. Eichenberger, J. K. O’Brien, K. M. O’Brien, P. Wu,
T. Chen, P. H. Oden, D. A. Prener, J. C. Shepherd, B. So,
Z. Sura, A. Wang, T. Zhang, P. Zhao, M. K. Gschwind,
R. Archambault, Y. Gao, and R. Koo.
Using advanced compiler technology to exploit the
performance of the cell broadband enginetm architecture.



IBM Syst. J., 45(1):59–84, 2006.

Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight,
Larkhoon Leem, Mike Houston, Ji Young Park, Mattan Erez,
Manman Ren, Alex Aiken, William J. Dally, and Pat
Hanrahan.
Sequoia: programming the memory hierarchy.
In SC ’06: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, page 83, New York, NY, USA, 2006. ACM.

Arnaud Giersch, Yves Robert, and Frederic Vivien.
Scheduling tasks sharing files from distributed repositories.
In In Euro-Par 2004: Parallel Processing: 10th International
Euro-Par Conference, volume 3149 of Lecture Notes in
Computer Science, pages 246–253. Springer-Verlag, 2004.

Linda Kaouane, Dominique Houzet, and Sylvain Huet.
Syscellc: Systemc on cell.
In ICCSA ’08: Proceedings of the 2008 International
Conference on Computational Sciences and Its Applications,



pages 234–244, Washington, DC, USA, 2008. IEEE Computer
Society.

Michael Kistler, Michael Perrone, and Fabrizio Petrini.
Cell multiprocessor communication network: Built for speed.
IEEE Micro, 26(3):10–23, 2006.

C. Mueller, B. Martin, and A. Lumsdaine.
Corepy: High-productivity cell/b.e. programming.
Technical report, In Proc. 1st STI/Georgia Tech Workshop on
Software and Applications for the Cell/B.E. Processor, 2007.

A. Munshi.
Opencl, 2008.

Michael D. McCool, Kevin Wadleigh, Brent Henderson, and
Hsin-Ying Lin.
Performance evaluation of gpus using the rapidmind
development platform.
In SC ’06: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, page 181, New York, NY, USA, 2006. ACM.



M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and T. Nakatani.
Mpi microtask for programming the cell broadband enginetm
processor.
IBM Syst. J., 45(1):85–102, 2006.

Matthew Papakipos.
The peakstream platform, high-productivity software
development for multi-core processors, April 2007.

Scott Schneider, Jae-Seung Yeom, Benjamin Rose, John C.
Linford, Adrian Sandu, and Dimitrios S. Nikolopoulos.
A comparison of programming models for multiprocessors with
explicitly managed memory hierarchies.
In PPoPP ’09: Proceedings of the 14th ACM SIGPLAN
symposium on Principles and practice of parallel programming,
pages 131–140, New York, NY, USA, 2008. ACM.

M. K. Velamati1, A. Kumar, N. Jayam, N. G. Senthilkumar,
P. K. Baruah, R. Sharma, S. Kapoor, and A. Srinivasan.
Optimization of collective communication in intra-cell mpi,
2007.



David Zhang, Qiuyuan J. Li, Rodric Rabbah, and Saman
Amarasinghe.
A lightweight streaming layer for multicore execution.
SIGARCH Comput. Archit. News, 36(2):18–27, 2008.


