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Outline
• Evolution of GPU hardware and software 

toward programmability and general 
purpose use

• Accelerating molecular modeling 
applications with GPUs:
– CUDA overview (brief)
– General GPU programming techniques
– VMD molecular visualization and analysis
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Computational Biology’s Insatiable 
Demand for Processing Power

• Simulations still fall short of 
biological timescales

• Large simulations extremely 
difficult to prepare, analyze

• Order of magnitude increase in 
performance would allow use of 
more sophisticated models
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Programmable Graphics Hardware
Groundbreaking research systems:

AT&T Pixel Machine (1989): 
82 x DSP32 processors

UNC PixelFlow (1992-98): 
64 x (PA-8000 + 

8,192 bit-serial SIMD)
SGI RealityEngine (1990s):

Up to 12 i860-XP processors perform 
vertex operations (ucode), fixed-
func. fragment hardware

All mainstream GPUs now incorporate 
fully programmable processors

SGI Reality Engine i860 
Vertex Processors

UNC PixelFlow Rack
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GLSL Sphere Fragment Shader

• Written in OpenGL 
Shading Language

• High-level C-like language 
with vector types and 
operations

• Compiled dynamically by 
the graphics driver at 
runtime

• Compiled machine code 
executes on GPU
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Origins of Computing on GPUs
• Widespread support for programmable shading led 

researchers to begin experimenting with the use of GPUs 
for general purpose computation, “GPGPU”

• Early GPGPU efforts used existing graphics APIs to 
express computation in terms of drawing

• As expected, expressing general computation problems in 
terms of triangles and pixels and “drawing the answer” is 
obfuscating and painful to debug…

• Soon researchers began creating dedicated GPU 
programming tools, starting with Brook and Sh, and 
ultimately leading to a variety of commercial tools such as 
RapidMind, CUDA, OpenCL, and others...



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Computing
• Commodity devices, omnipresent in modern 

computers (over a million sold per week)
• Massively parallel hardware, hundreds of 

processing units, throughput oriented architecture
• Standard integer and floating point types supported
• Programming tools allow software to be written in 

dialects of familiar C/C++ and integrated into 
legacy software

• GPU algorithms are often multicore friendly due to 
attention paid to data locality and data-parallel work 
decomposition
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What Speedups Can GPUs Achieve?
• Single-GPU speedups of 10x to 30x vs. one 

CPU core are common
• Best speedups can reach 100x or more, 

attained on codes dominated by  floating 
point arithmetic, especially native GPU 
machine instructions, e.g. expf(), rsqrtf(), …

• Amdahl’s Law can prevent legacy codes 
from achieving peak speedups with shallow 
GPU acceleration efforts
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Comparison of CPU and GPU           
Hardware Architecture

CPU: Cache heavy, 
focused on individual 
thread performance 

GPU: ALU heavy, 
massively parallel, 
throughput oriented
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GPU Peak Single-Precision Performance:
Exponential Trend
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GPU Peak Memory Bandwidth:
Linear Trend

GT200
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NVIDIA CUDA Overview
• Hardware and software architecture for GPU 

computing, foundation for building higher level 
programming libraries, toolkits

• C for CUDA, released in 2007: 
– Data-parallel programming model
– Work is decomposed into “grids” of “blocks”

containing “warps” of “threads”, multiplexed onto 
massively parallel GPU hardware

– Light-weight, low level of abstraction, exposes many 
GPU architecture details/features enabling development 
of high performance GPU kernels
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CUDA Threads, Blocks, Grids
• GPUs use hardware multithreading to hide latency 

and achieve high ALU utilization
• For high performance, a GPU must be saturated

with concurrent work: >10,000 threads
• “Grids” of hundreds of “thread blocks” are 

scheduled onto a large array of SIMT cores
• Each core executes several thread blocks of 64-

512 threads each, switching among them to hide 
latencies for slow memory accesses, etc…

• 32 thread “warps” execute in lock-step (e.g. in 
SIMD-like fashion)
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GPU Memory Accessible in CUDA
• Mapped host memory: up to 4GB, ~5.7GB/sec 

bandwidth (PCIe), accessible by multiple GPUs
• Global memory: up to 4GB, high latency (~600 

clock cycles), 140GB/sec bandwidth, accessible 
by all threads, atomic operations (slow)

• Texture memory: read-only, cached, and 
interpolated/filtered access to global memory

• Constant memory: 64KB, read-only, cached, 
fast/low-latency if data elements are accessed in 
unison by peer threads

• Shared memory:16KB, low-latency, accessible 
among threads in the same block, fast if accessed 
without bank conflicts
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An Approach to Writing CUDA Kernels 
• Find an algorithm that exposes substantial parallelism, 

thousands of independent threads…
• Identify appropriate GPU memory subsystems for storage 

of data used by kernel
• Are there trade-offs that can be made to exchange 

computation for more parallelism?
– Though counterintuitive, past successes resulted from 

this strategy
– “Brute force” methods that expose significant 

parallelism do surprisingly well on current GPUs
• Analyze the real-world use case for the problem and 

optimize the kernel for the problem size/characteristics that 
will be heavily used
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VMD – “Visual Molecular Dynamics”
• Visualization and analysis of molecular dynamics simulations, 

sequence data, volumetric data, quantum chemistry simulations, 
particle systems, …

• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/
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Range of VMD Usage Scenarios
• Users run VMD on a diverse range of hardware: 

laptops, desktops, clusters, and supercomputers
• Typically used as a desktop application, for 

interactive 3D molecular graphics and analysis
• Can also be run in pure text mode for numerically 

intensive analysis tasks, batch mode movie 
rendering, etc…

• GPU acceleration provides an opportunity to make 
some slow, or batch calculations capable of being 
run interactively, or on-demand…
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Need for Multi-GPU 
Acceleration in VMD

• Ongoing increases in supercomputing resources at 
NSF centers such as NCSA enable increased 
simulation complexity, fidelity, and longer time 
scales…

• Drives need for more visualization and analysis 
capability at the desktop and on clusters running 
batch analysis jobs

• Desktop use is the most compute-resource-limited 
scenario, where GPUs can make a big impact…
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Molecular orbital  

calculation and display

CUDA Acceleration in VMD

Electrostatic field 

calculation, ion placement

Imaging of gas migration 
pathways in proteins with 
implicit ligand sampling
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Electrostatic Potential Maps
• Electrostatic potentials 

evaluated on 3-D lattice:

• Applications include:
– Ion placement for 

structure building
– Time-averaged potentials 

for simulation
– Visualization and 

analysis Isoleucine tRNA synthetase
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Direct Coulomb Summation
• Each lattice point accumulates electrostatic potential 

contribution from all atoms: 
potential[j] +=  charge[i] / rij

atom[i]

rij: distance 
from lattice[j] 

to atom[i]
Lattice point j 

being evaluated
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Direct Coulomb Summation on the GPU

• GPU outruns a CPU core by 44x
• Work is decomposed into tens of thousands of 

independent threads, multiplexed onto hundreds of 
GPU processing units

• Single-precision FP arithmetic is adequate for intended 
application

• Numerical accuracy can be improved  by compensated 
summation, spatially ordered summation groupings, or 
accumulation of potential in double-precision

• Starting point for more sophisticated linear-time 
algorithms like multilevel summation
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DCS CUDA Block/Grid Decomposition 
(unrolled, coalesced)

Grid of thread blocks:

Padding waste

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks: 
64-256 threads

…

Unrolling increases 
computational tile size

Threads compute
up to 8 potentials, 

skipping by half-warps
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Global Memory

Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

GPUConstant Memory

Direct Coulomb Summation on the GPU
Host

Atomic
Coordinates

Charges

Threads compute
up to 8 potentials, 

skipping by half-warps

Thread blocks:
64-256 threads

Grid of thread blocks

Lattice padding
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Direct Coulomb Summation Runtime

GPU 
underutilized

GPU fully utilized, 
~40x faster than CPU

Accelerating molecular modeling applications with graphics processors. 
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. 

J. Comp. Chem., 28:2618-2640, 2007.

Lower 
is better

Cold start GPU 
initialization time: 

~110ms 
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Direct Coulomb Summation Performance

CUDA-Simple: 
14.8x faster,

33% of fastest 
GPU kernel

CUDA-Unroll8clx:
fastest GPU kernel,

44x faster than CPU, 
291 GFLOPS on 

GeForce 8800GTX

GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, 
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

CPU

Number of thread blocks modulo number of SMs results in 
significant performance variation for small workloads
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GPU 1 GPU N…

Multi-GPU Direct 
Coulomb Summation

NCSA GPU Cluster
http://www.ncsa.uiuc.edu/Projects/GPUcluster/

Evals/sec TFLOPS Speedup*

4-GPU (2 Quadroplex) 
Opteron node at NCSA

157 billion 1.16 176

4-GPU GTX 280 (GT200) 241 billion 1.78 271

*Speedups relative to Intel QX6700 CPU core w/ SSE
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Infinite vs. Cutoff Potentials 
• Infinite range potential:

– All atoms contribute to all lattice points
– Summation algorithm has quadratic complexity

• Cutoff (range-limited) potential:
– Atoms contribute within cutoff distance to lattice points
– Summation algorithm has linear time complexity 
– Has many applications in molecular modeling:

• Replace electrostatic potential with shifted form
• Short-range part for fast methods of approximating full electrostatics
• Used for fast decaying interactions (e.g. Lennard-Jones, Buckingham) 



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Cutoff Summation
• Each lattice point accumulates electrostatic potential 

contribution from atoms within cutoff distance:
if (rij < cutoff)

potential[j] += (charge[i] / rij) * s(rij)
• Smoothing function s(r) is algorithm dependent

Cutoff radius rij: distance 
from lattice[j] 

to atom[i]

Lattice point j 
being evaluated atom[i]
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Cutoff Summation on the GPU

Global memory Constant memory
Offsets for bin 
neighborhood

Shared memory

atom bin

Potential 
map 

regions Bins of atoms

Each thread block cooperatively 
loads atom bins from surrounding 
neighborhood into shared memory 
for evaluation

Atoms are spatially hashed into fixed-size bins
CPU handles overflowed bins (GPU kernel can be very aggressive)
GPU thread block calculates corresponding region of potential map, 
Bin/region neighbor checks costly; solved with universal table look-up

Look-up table 
encodes “logic” of 
spatial geometry 
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Using the CPU to Improve GPU 
Performance

• GPU performs best when the work evenly divides 
into the number of threads/processing units

• Optimization strategy: 
– Use the CPU to “regularize” the GPU workload
– Use fixed size bin data structures, with “empty” slots 

skipped or producing zeroed out results
– Handle exceptional or irregular work units on the CPU 

while the GPU processes the bulk of the work
– On average, the GPU is kept highly occupied, attaining 

a much higher fraction of peak performance
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GPU acceleration of cutoff pair potentials for molecular modeling applications. 
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008 

Conference On Computing Frontiers, pp. 273-282, 2008.

Cutoff Summation Runtime
GPU cutoff with 

CPU overlap:
17x-21x faster than 

CPU core

If asynchronous 
stream blocks due 
to queue filling, 

performance will 
degrade from 

peak…
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Cutoff Summation Observations
• Use of CPU to handle overflowed bins is very 

effective, overlaps completely with GPU work
• Caveat: avoid overfilling the asynchronous stream 

queue with work, doing so can trigger blocking 
behavior (improved in current drivers)

• The use of compensated summation (all GPUs) or 
double-precision (GT200 only) for potential 
accumulation resulted in only a ~10%
performance penalty vs. pure single-precision 
arithmetic, while reducing the effects of floating 
point truncation
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Multilevel Summation
• Approximates full electrostatic potential
• Calculates sum of smoothed pairwise potentials 

interpolated from a hierarchy of lattices
• Advantages over PME and/or FMM:

– Algorithm has linear time complexity
– Permits non-periodic and periodic boundaries
– Produces continuous forces for dynamics (advantage 

over FMM)
– Avoids 3-D FFTs for better parallel scaling (advantage 

over PME)
– Spatial separation allows use of multiple time steps
– Can be extended to other pairwise interactions

• Skeel, Tezcan, Hardy, J Comp Chem, 2002 — Computing forces for molecular dynamics

• Hardy, Stone, Schulten, J Paral Comp, 2009 — GPU-acceleration of potential map calculation
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Multilevel Summation Calculation
map
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exact

short-range
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interpolated
long-range
interactions
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short-range cutoff

interpolationanterpolation

h-lattice cutoff
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prolongation
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charges
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Multilevel Summation on the GPU

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for  1.5 M atoms.
Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

Accelerate  short-range cutoff and lattice cutoff parts
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Photobiology of Vision and Photosynthesis
Investigations of the chromatophore, a photosynthetic organelle

Full chromatophore model will permit structural, chemical and kinetic 
investigations at a structural systems biology level

Light

Electrostatic field of chromatophore model
from multilevel summation method:

computed with 3 GPUs (G80) in ~90 seconds, 
46x faster than single CPU core

Electrostatics needed to build full 
structural model, place ions, study 

macroscopic properties

Partial model:    
~10M atoms
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Molecular Orbitals
• Visualization of MOs aids 

in understanding the 
chemistry of molecular 
system

• MO spatial distribution is 
correlated with 
probability density for an 
electron(s)

• Algorithms for computing 
other interesting 
properties are similar, and 
can share code
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Computing Molecular Orbitals
• Calculation of high 

resolution MO grids can 
require tens to hundreds of 
seconds in existing tools

• Existing tools cache MO 
grids as much as possible 
to avoid recomputation:
– Doesn’t eliminate the wait 

for initial calculation, 
hampers interactivity

– Cached grids consume 
100x-1000x more memory 
than MO coefficients C60
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Animating Molecular Orbitals
• Animation of (classical 

mechanics) molecular 
dynamics trajectories 
provides insight into 
simulation results

• To do the same for QM 
or QM/MM simulations 
one must compute MOs 
at ~10 FPS or more

• >100x speedup (GPU) 
over existing tools now 
makes this possible! C60
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Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
Most performance-demanding step, run on GPU…

Extract isosurface mesh from 3-D MO grid 

Apply user coloring/texturing 
and render the resulting surface 

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index, 
retrieve MO wavefunction coefficients  

One-time 
initialization

For each trj frame, for   
each MO shown

Initialize Pool of GPU 
Worker Threads
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CUDA Block/Grid Decomposition

Padding optimizes glob. mem 
perf, guaranteeing coalescing

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…
Small 8x8 thread 
blocks afford large 
per-thread register 
count, shared mem.
Threads compute 
one MO lattice 
point each.

…

MO 3-D lattice decomposes into   
2-D slices (CUDA grids)
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MO Kernel for One Grid Point  (Naive C)

Loop over atoms

Loop over shells

Loop over primitives: 
largest component of 
runtime, due to expf()

Loop over angular 
momenta

(unrolled in real code)

…

for (at=0; at<numatoms; at++) {

int prim_counter = atom_basis[at];

calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);

for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {

int shell_type = shell_symmetry[shell_counter];

for (prim=0; prim < num_prim_per_shell[shell_counter];  prim++) {

float exponent      = basis_array[prim_counter ];

float contract_coeff = basis_array[prim_counter + 1];

contracted_gto += contract_coeff * expf(-exponent*dist2);

prim_counter += 2;

}

for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {

int imax = shell_type - j; 

for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv)

tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;

}

value += tmpshell * contracted_gto;

shell_counter++;

} 

} …..
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Preprocessing of Atoms, Basis Set, and 
Wavefunction Coefficients

• Must make effective use of high bandwidth, low-
latency GPU on-chip memory, or CPU cache:
– Overall storage requirement reduced by eliminating 

duplicate basis set coefficients
– Sorting atoms by element type allows re-use of basis set 

coefficients for subsequent atoms of identical type

• Padding, alignment of arrays guarantees coalesced 
GPU global memory accesses, CPU SSE loads
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GPU Traversal of Atom Type, Basis Set,
Shell Type, and Wavefunction Coefficients

• Loop iterations always access same or consecutive 
array elements for all threads in a thread block:
– Yields good constant memory cache performance
– Increases shared memory tile reuse

Monotonically increasing memory references

Different at each 
timestep, and for   

each MO

Constant for all MOs, 
all timesteps

Strictly sequential memory references
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Use of GPU On-chip Memory
• If total data less than 64 kB, use only const mem:

– Broadcasts data to all threads, no global memory accesses!
• For large data, shared memory used as a program-

managed cache, coefficients loaded on-demand:
– Tile data in shared mem is broadcast to 64 threads in a block
– Nested loops traverse multiple coefficient arrays of varying 

length, complicates things significantly…
– Key to performance is to locate tile loading checks outside of 

the two performance-critical inner loops
– Tiles sized large enough to service entire inner loop runs
– Only 27% slower than hardware caching provided by 

constant memory (GT200)
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Coefficient array in GPU global memory

Array tile loaded in GPU shared memory.  Tile size is a power-of-two, 
multiple of coalescing size, and allows simple indexing in inner loops 
(array indices are merely offset for reference within loaded tile).

64-Byte memory 
coalescing block boundaries

Full tile padding

Surrounding data,
unreferenced

by next batch of 
loop iterations
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VMD MO Performance Results for C60
Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

Kernel Cores/GPUs Runtime (s) Speedup
CPU ICC-SSE 1 46.58 1.00

CPU ICC-SSE 4 11.74 3.97

CPU ICC-SSE-approx** 4 3.76 12.4

CUDA-tiled-shared 1 0.46 100.

CUDA-const-cache 1 0.37 126.

CUDA-const-cache-JIT* 1 0.27 173.
(JIT 40% faster)

C60 basis set 6-31Gd.  We used an unusually-high resolution MO grid for 
accurate timings.  A more typical calculation has 1/8th the grid points.

* Runtime-generated JIT kernel compiled using batch mode CUDA tools
**Reduced-accuracy approximation of expf(),                                    
cannot be used for zero-valued MO isosurfaces
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Performance Evaluation:
Molekel, MacMolPlt, and VMD

Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
C60-A C60-B Thr-A Thr-B Kr-A Kr-B

Atoms 60 60 17 17 1 1

Basis funcs (unique) 300 (5) 900 (15) 49 (16) 170 (59) 19 (19) 84 (84)

Kernel Cores 
GPUs

Speedup vs. Molekel on 1 CPU core

Molekel 1* 1.0 1.0 1.0 1.0 1.0 1.0
MacMolPlt 4 2.4 2.6 2.1 2.4 4.3 4.5
VMD GCC-cephes 4 3.2 4.0 3.0 3.5 4.3 6.5
VMD ICC-SSE-cephes 4 16.8 17.2 13.9 12.6 17.3 21.5
VMD ICC-SSE-approx** 4 59.3 53.4 50.4 49.2 54.8 69.8
VMD CUDA-const-cache 1 552.3 533.5 355.9 421.3 193.1 571.6
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VMD Orbital Dynamics Proof of Concept
One GPU can compute and animate this movie on-the-fly!

CUDA const-cache kernel,     
Sun Ultra 24, GeForce GTX 285 

GPU MO grid calc. 0.016 s

CPU surface gen, 
volume gradient, 
and GPU rendering

0.033 s

Total runtime 0.049 s
Frame rate 20 FPS

With GPU speedups over 100x, previously insignificant CPU 
surface gen, gradient calc, and rendering are now 66% of runtime.
Need GPU-accelerated surface gen next…

threonine
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Multi-GPU Load Balance

• Many early CUDA codes 
assumed all GPUs were 
identical 

• All new NVIDIA cards support 
CUDA, so a typical machine 
may have a diversity of GPUs 
of varying capability

• Static decomposition works 
poorly for non-uniform 
workload, or diverse GPUs,  
e.g. 2 SM, 16 SM, 30 SM

GPU 1
2 SMs

GPU 3
30 SMs

…
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VMD Multi-GPU Molecular Orbital 
Performance Results for C60

Intel Q6600 CPU, 4x Tesla C1060 GPUs,
Uses persistent thread pool to avoid GPU init overhead, 

dynamic scheduler distributes work to GPUs

Kernel Cores/GPUs Runtime (s) Speedup Parallel 
Efficiency

CPU-ICC-SSE 1 46.580 1.00 100%

CPU-ICC-SSE 4 11.740 3.97 99%
CUDA-const-cache 1 0.417 112 100%

CUDA-const-cache 2 0.220 212 94%

CUDA-const-cache 3 0.151 308 92%

CUDA-const-cache 4 0.113 412 92%
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MO Kernel Structure, Opportunity for JIT…
Data-driven, but representative loop trip counts in (…)

Loop over atoms (1 to ~200) {                  

Loop over electron shells for this atom type (1 to ~6) {

Loop over primitive functions for this shell type (1 to ~6) {

}

Loop over angular momenta for this shell type (1 to ~15) {}

}

}

Unpredictable (at compile-time, since data-driven ) but 
small loop trip counts result in significant loop overhead.  
Dynamic kernel generation and JIT compilation can 
unroll entirely, resulting in 40% speed boost
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Molecular Orbital Computation and Display Process
Dynamic Kernel Generation, Just-In-Time (JIT) C0mpilation

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
using basis set-specific CUDA kernel

Extract isosurface mesh from 3-D MO grid 

Render the resulting surface 

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index, 
retrieve MO wavefunction coefficients  

One-time 
initialization

Generate/compile basis set-specific CUDA kernel

For each trj frame, for   
each MO shown

Initialize Pool of GPU 
Worker Threads
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….. 

contracted_gto = 1.832937 * expf(-7.868272*dist2);

contracted_gto += 1.405380 * expf(-1.881289*dist2);

contracted_gto += 0.701383 * expf(-0.544249*dist2);

// P_SHELL

tmpshell = const_wave_f[ifunc++] * xdist;

tmpshell += const_wave_f[ifunc++] * ydist;

tmpshell += const_wave_f[ifunc++] * zdist;

value += tmpshell * contracted_gto;

contracted_gto = 0.187618 * expf(-0.168714*dist2);

// S_SHELL

value += const_wave_f[ifunc++] * contracted_gto;

contracted_gto = 0.217969 * expf(-0.168714*dist2);

// P_SHELL

tmpshell = const_wave_f[ifunc++] * xdist;

tmpshell += const_wave_f[ifunc++] * ydist;

tmpshell += const_wave_f[ifunc++] * zdist;

value += tmpshell * contracted_gto;

contracted_gto = 3.858403 * expf(-0.800000*dist2);

// D_SHELL

tmpshell = const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * zdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

value += tmpshell * contracted_gto;

….. 

// loop over the shells belonging to this atom (or basis function)

for (shell=0; shell < maxshell; shell++) {

float contracted_gto = 0.0f;

// Loop over the Gaussian primitives of this contracted

// basis function to build the atomic orbital

int maxprim = const_num_prim_per_shell[shell_counter];

int shell_type = const_shell_symmetry[shell_counter];

for (prim=0; prim < maxprim;  prim++) {

float exponent       = const_basis_array[prim_counter   ];

float contract_coeff = const_basis_array[prim_counter + 1];

contracted_gto += contract_coeff * exp2f(-exponent*dist2);

prim_counter += 2;

}

/* multiply with the appropriate wavefunction coefficient */

float tmpshell=0;

switch (shell_type) {

case S_SHELL:

value += const_wave_f[ifunc++] * contracted_gto;

break;

[…..]

case D_SHELL:

tmpshell += const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * zdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

value += tmpshell * contracted_gto;

break;

General loop-based 
CUDA kernel

Dynamically-generated 
CUDA kernel (JIT)
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Lessons Learned
• GPU algorithms need fine-grained parallelism and 

sufficient work to fully utilize the hardware
• Much of per-thread GPU algorithm optimization 

revolves around efficient use of multiple memory 
systems and latency hiding

• Concurrency can often be traded for per-thread 
performance, in combination with increased use of 
registers or shared memory

• Fine-grained GPU work decompositions often 
compose well with the comparatively coarse-
grained decompositions used for multicore or 
distributed memory programing
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Lessons Learned (2)

• The host CPU can potentially be used to 
“regularize” the computation for the GPU, 
yielding better overall performance

• Overlapping CPU work with GPU can hide some 
communication and unaccelerated computation

• Targeted use of double-precision floating point 
arithmetic, or compensated summation can reduce 
the effects of floating point truncation at low cost 
to performance
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Summary
• GPUs are not a magic bullet, but they can perform 

amazingly well when used effectively
• There are many good strategies for extracting high 

performance from individual subsystems on the 
GPU

• It is wise to begin with a well designed application 
and a thorough understanding of its performance 
characteristics on the CPU before beginning work 
on the GPU

• By making effective use of multiple GPU 
subsystems at once, tremendous performance 
levels can potentially be attained
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