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Meaning from signals

Signal Semantics
time-indexed values handwritten text/math

financial significance
medical situation

location,intensity pairs identification of medical structures
identification of dangerous objects

time indexed images behaviour recognition
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Describing signals

Measurements are uncertain

Great variability
spatial differences - scale
temporal differences - speed, duration
context difference - background
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Model-based pattern recognition

Instead of analyzing observed signal
Posit (latent) process (“model”) that generates signal

y1 y2 y3

Transition p(xt |xt−1)

Observation p(yt |xt )
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The estimation problem

p(xt |y0:t ) ∝ p(yt |xt )p(xt |y0:t−1)

p(xt |y0:t−1) =

∫
p(xt |xt−1)p(xt−1|y0:t−1)dxt−1

If transition/observation models are linear/Gaussian, solve by
Kalman filter
KF allows optimal solution
Common approach for nonlinear/non-Gaussian problems:
linearize, KF
Nonlinear case handled directly by SMC methods
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Particle filter overview

Sequential Monte Carlo (SMC, or Particle Filter)
Enable approximate solution to non-linear systems
Better to have approximate solution to real problem than exact
solution to approximate problem
Maintain discrete, or particle representation of filtering distribution
Founded on Bayesian principles

Domain-knowledge and other prior information readily incorporated
Results are full distributions, not point- or interval-estimates

Sampling techniques are (significantly) more computationally
demanding than analytical solutions.
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Particle filters

x

(UW / RapidMind) QMC PFs May 20th, 2009 8 / 18



Particle filters

x

yyy

(UW / RapidMind) QMC PFs May 20th, 2009 8 / 18



Particle filters

x

yyy

(UW / RapidMind) QMC PFs May 20th, 2009 8 / 18



Particle filters

x

yyy

(UW / RapidMind) QMC PFs May 20th, 2009 8 / 18



Particle filters

x

yyy

(UW / RapidMind) QMC PFs May 20th, 2009 8 / 18



Particle filter algorithm

1: for t ∈ {2, . . . T} do
2: Sample N particles {x̃ (i)

t }Ni=1 ∼ p(xt |xt−1)

3: Likelihood evaluation ω
(i)
t =

p(yt |x̃
(i)
t )PN

i=1 p(yt |x̃
(i)
t )

4: {x (i)
t }Ni=1 ← RESAMPLING(X̃ , {ω(i)} )

5: end for

function RESAMPLING(X ,Ω)
index ∼ Multinomial(Ω)
return DIFFUSE({x (i)|x (i) ∈ X

∧
i ∈ index})

end function
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Parallel particle filters

Particle dynamics

rngrng rng

gengen gen
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Parallel resampling methods

10 1
N
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Are parallel algorithms enough to cope with problem
size?

Inference problems scale exponentially (“curse of dimensionality”)
Parallel machines only offer solutions that scale linearly
Additional improvements are needed
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Increasing efficiency of PF

Reducing time to process each particle
Subspace sampling
Simplify likelihood ratio evaluation

Reduce number of particles necessary to achieve accuracy
Improve guesses – importance sampling
Application-specific heuristics (local search)
Variance reduction
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Quasi-Monte Carlo techniques

Variance reduction technique
Lattice particle filters [Lemieux et al., 2001]
Sequence driving simulation is now not independent,
(randomized) highly-uniform
Can use components of state that result in most significant
variation (“effective dimension”)
Fight “over-adaptation” of traditional SIR PF.
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Low-discrepancy sequences
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Results

Tracker: 4D state, (x , y , w , h)

Implementation N Error Performance
Serial SIR 103 3.8 1

Parallel SIR (G94) 103 3.3 15.3
Parallel LPF (G94) 103 0.7 9.2
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Future work

Experiment with more localized resampling algorithms
Trajectory recognition using multi-core host/GPU array
Sensitivity analysis for better choice of lattice rule
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Conclusions

Bayesian signal processing is a very powerful and general tool
Sequential Monte Carlo methods allow for flexible Bayesian
inference
Parallel processors are crucial to enabling inferencing
Parallel processing alone cannot handle curse of dimensionality
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