SIGN-IN

Publication: Genome assembly comparison identifies structural variants in the human genome

All || By Area || By Year

Title Genome assembly comparison identifies structural variants in the human genome
Authors/Editors* Khaja R, Zhang J, MacDonald JR, He Y, Joseph-George AM, Wei J, Rafiq MA, Qian C, Shago M, Pantano L, Aburatani H, Jones K, Redon R, Hurles M, Armengol L, Estivill X, Mural RJ, Lee C, Scherer SW, Feuk L
Where published* Nat Genet. 2006 Dec;38(12):1413-8
How published* Journal
Year* 2006
Volume 38
Number
Pages 6
Publisher Nature Publishing Group
Keywords
Link http://www.nature.com/naturegenetics
Abstract
Numerous types of DNA variation exist, ranging from SNPs to larger structural alterations such as copy number variants (CNVs) and inversions. Alignment of DNA sequence from different sources has been used to identify SNPs1,2 and intermediate-sized variants (ISVs)3. However, only a small proportion of total heterogeneity is characterized, and little is known of the characteristics of most smaller-sized (o50 kb) variants. Here we show that genome assembly comparison is a robust approach for identification of all classes of genetic variation. Through comparison of two human assemblies (Celera’s R27c compilation and the Build 35 reference sequence), we identified megabases of sequence (in the form of 13,534 putative non-SNP events) that were absent, inverted or polymorphic in one assembly. Database comparison and laboratory experimentation further demonstrated overlap or validation for 240 variable regions and confirmed 41.5 million SNPs. Some differences were simple insertions and deletions, but in regions containing CNVs, segmental duplication and repetitive DNA, they were more complex. Our results uncover substantial undescribed variation in humans, highlighting the need for comprehensive annotation strategies to fully interpret genome scanning and personalized sequencing projects.
Go to Bioinformatics
Back to page 78 of list